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Problem Formulation

Context

• Modeling Ocean Surface Dynamics

• Forecasting and Data-Assimilation Applications

Challenges

• Unknown Equations, Too-Complicated to be used

• Non-Linear Dynamics with Sensitive Stability Behaviour

• Partial and/or Noisy Observations 



Problem Formulation

Challenges

• Unknown Equations, Too-Complicated to be used Data-Driven
Representaions

• Non-Linear Dynamics with Sensitive Stability Behaviour Long-term
charactarization of the models

• Partial and/or Noisy Observations  Problem dependent, several
considerations



Problem Formulation

Challenges

• Temporal sparse data
• High order integration schemes inference

• Partially Observed Systems Some componenets, influencing the 
Dynamics are never observed
• Stochastic Stochastic models

• Deterministic Embedology



Residual Integration Neural Networks



Proposed Framework

High order integration schemes inference, motivation

• Continuous setup : Estimate Derivatives

• Discrete setup       : Transform ODE into discrete equation

Numerical Integration
scheme

Which integration scheme to use ?

• Tradeoff numerical complexity/ Precision ?

• Identifiability



Proposed Framework

High order integration schemes inference, jointly to the data driven dynamical
model



Proposed Framework

Case study : sub-sampled Lorenz 63

Training data

Simulated attractor

Simulated attractor

h = 0.2 h = 0.3 h = 0.4



Proposed Framework

Learnt Integrators



Partially Observed Systems



Proposed Framework

• Classical state-of-the-art : 
• Measuring generic independent variables

• Finding a geometrical reconstruction from a single observed variable

• Issues

• Independet of a data (or model) driven formulation



Proposed Framework

• Our approach : Project the observation x into a high dimensional space 𝑢, 
with 𝑢=[𝑥,𝑙1,𝑙2,…,𝑙𝑛]

• Solve the Following optimization problem

Fit :
𝑑𝑢

𝑑𝑡
= 𝑓𝜃 𝑢

With
𝑢 = [𝑥, 𝑙1, 𝑙2, … , 𝑙𝑛]

𝜃, 𝑙 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃,𝑙{𝛼|𝑥(𝑡) − 𝐺(න
𝑡−1

𝑡

𝑓 𝑢 𝑡′ 𝑑𝑡′)| + (1 − 𝛼)|𝑢 𝑡 − න
𝑡−1

𝑡

𝑓 𝑢 𝑡′ 𝑑𝑡′ |}



Proposed Framework
Attractor Reconstruction



Proposed Framework
Forecast

Lyap = 0,87

Lyap = 0,82

Lyap = 0,96

Lyap = 0,82



Proposed Framework
Issues
• Our spawned manifold is not dense in the phase space :/



Proposed Framework
Idea
• Boundedness constraints : Constraint the trajectories of the 

dynamical system to live in a closed ball in the phase space

• In practice : Energy preserving non linearity  + Negative eigenvalues of 
the linear part of (a shifted version of) the model (Schlegel et al. 
2013):



Proposed Constrained Framework
Lorenz 63



Proposed Framework
Lorenz 96



Proposed Framework
SWE

True Shallow water Model Simulation Error (RMSE)



Proposed Framework
SWE

Model Simulation #1

Model Simulation 
from a perturbed
initial condition

Model Simulation 
from a far initial 
condition



Proposed Framework
SLA-A

True State

Model Simulation 
from a perturbed
initial conditionModel Simulation



Proposed Framework
Koopman

Fit :
𝑑𝑢

𝑑𝑡
= 𝐴𝑢

With
𝑢 = [𝑥, 𝑙1, 𝑙2, … , 𝑙𝑛]

𝜃, 𝑙 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃,𝑙 𝛼 𝑥 𝑡 − 𝐺 න
𝑡−1

𝑡

𝐴𝑢 𝑡′ 𝑑𝑡′ + 1 − 𝛼 𝑢 𝑡 − න
𝑡−1

𝑡

𝐴𝑢 𝑡′ 𝑑𝑡′

• Our approach : Project the observation x into a high dimensional space 𝑢, 
with 𝑢=[𝑥,𝑙1,𝑙2,…,𝑙𝑛]

• Solve the Following optimization problem



Proposed Koopman-Framework
SWE

True State Projection Koopman Error (MAE)



Proposed Koopman
Data Assimilation

Ground truth Observation

Projection AnDA Koopman KF



Résumé

• The proposed method allows the identifications of ODEs for partially 
observed systems

• The ODE is parametrized as a LQM model, in order to garentee
boundedness

• In the Linear case, our method is equivalent to learn both a Koopman
operator and its observables 



Perspectives

• Constrained formulation of latent states to explain specific variability 
(high resolution scales, POD truncation modes …etc.)

• Model formulation is dependent on finding an appropriate Lyapunov
function


