

Tâche 4: Cas d'études et évaluation

Ambition de la tâche 4 du projet ANR MeLODy

Summary. Task T4 will provide a framework for fostering the application of the methodological development from T1-3 to upper ocean dynamics. It will develop a suite for <u>benchmarking</u> these methodological contribution with respect to state-of-the-art model-driven and data-driven schemes (T4.1) and will coordinate the distribution of project software tools and datasets.

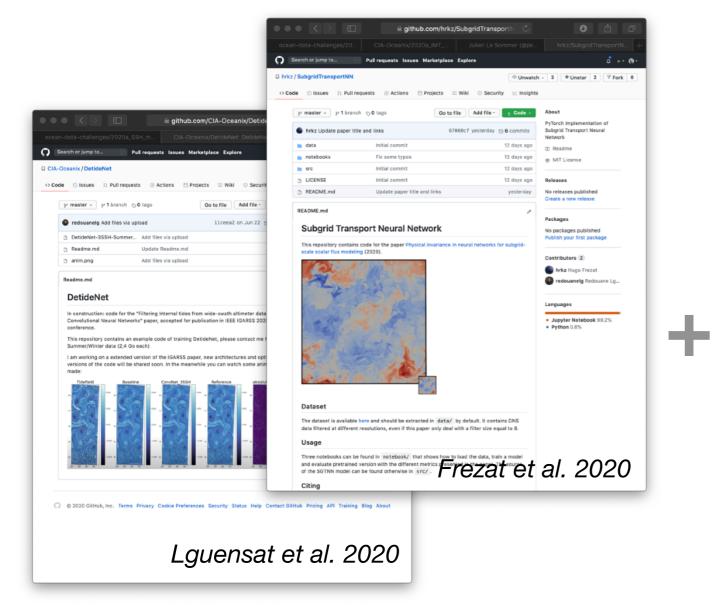
All partners

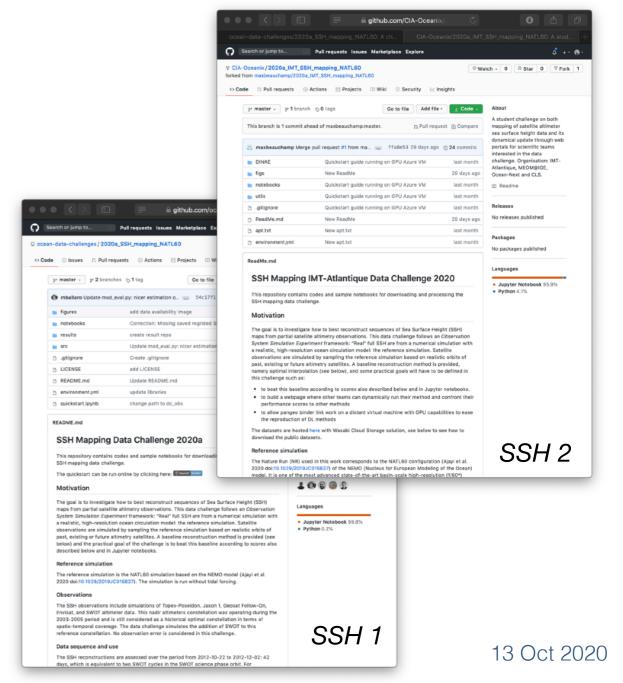
Integrated framework for benchmarking MeLODy methodological developments

- Refine the definition of target inverse problems
- Provide datasets and identify metric for prototyping data challenges
- Distribute Data Challenges for the project annual workshops

Technical support and coordination for scaling up to real-world applications

- Aggregate and distribute project modelling tools
- Facilitate the transition from toy problems to real-world applications


En pratique, rassembler un certain nombres de data challenges sur la base des travaux en cours et organiser leur diffusion



Travaux engagés au cours de l'année

En lien avec OceaniX et BOOST-SWOT,

- exploration sur les modalités et le format de diffusion d'un challenge en lien avec une étude scientifique
- diffusion de deux challenges (dans le contexte du traitement des données SWOT)
- documentation des problèmes liés à articles en cours de prep/soumis
- demande de moyens calcul GPU GENCI MeLODy

Typologie des cas d'études

1. Formulation de (composantes de) modèles pronostiques

- cas typiques : émulateur de modèles, fermeture sous-maille, equation discovery
- en pratique : apprentissage à partir d'observations (x,y,z,t) partielles et/ou bruités du système
- exemple: Frezat et al, Kazantsev et al.

2. Caractérisation, description et segmentation de régimes dynamiques

- cas typiques : reduction de dimension, séparation de sources, modèle réduit
- en pratique : apprentissage (supervisé ou non)
- exemple: Penduff et al., Sonnewald et al., Lguensat et al.

3. Reconstruction d'état (temps-espace)

- cas typiques : cartographie 2D, interpolation,
- en pratique : apprentissage à partir d'observations (x,y,z,t) partielles et/ou bruités du système
- exemple: interpolation SWOT

4. Prediction de l'évolution temporelle d'un système

- cas typiques: forecast, mais aussi utile pour interpolation,
- en pratique : apprentissage à partir d'observations (x,y,z,t) partielles et/ou bruités du système
- exemple : L63, Ouala et al.

Les différentes taches possibles sont en fait très imbriquées (ex : 4 peut mobiliser 1 + 3)

Propositions et questions ouvertes

Propositions

- après une phase exploratoire, mise en place d'une approche + structurée
- organiser la diffusion d'au moins 2 problèmes sur chaque types 1-5
- rassembler les infos sur les codes permettant la production des données
- certains mobilisant des données de modèles, d'autres des observations

Questions:

- quel point d'entrée (portail), quel degré de rationalisation des descriptions ?
- comment favoriser le partage effectif des cas d'études ?